226 research outputs found

    Australian Government Balance Sheet Management

    Get PDF
    Since almost eliminating net debt, the Australian Government%u2019s attention has turned to the financing of broader balance sheet liabilities, such as public sector superannuation. Australia will be developing a significant financial asset portfolio in the %u2018Future Fund%u2019 to smooth the financing of expenses through time. This raises the significant policy question of how best to manage the government balance sheet to reduce risk. This paper provides a framework for optimal balance sheet management. The major conclusions are that: %u2013 fiscal sustainability depends on both the expected path of future taxation and the risks around that path; %u2013 optimal balance sheet management requires knowledge of how risks affect the balance sheet (and therefore volatility in tax rates); and %u2013 the government%u2019s financial investment strategy should reduce the risk to government finances from macroeconomic shocks that permanently affect the budget. Based on this framework, we find that a Future Fund portfolio that included (amongst other potential investments) domestic nominal securities and equities of selected countries would reduce overall balance sheet risk.

    Physiological basis for longitudinal motion of the arterial wall

    Get PDF
    As opposed to arterial distension in the radial plane, longitudinal wall motion (LWM) is a multiphasic and bidirectional displacement of the arterial wall in the anterograde (i.e., in the direction of blood flow) and retrograde (i.e., opposing direction of blood flow) directions. While initially disregarded as imaging artifact, LWM has been consistently reported in ultrasound investigations in the last decade and is reproducible beat-to-beat, albeit with large inter-individual variability across healthy and diseased populations. Emerging literature has sought to examine the mechanistic control of LWM to explain the shape and variability of the motion pattern but lacks considerations for key foundational vascular principles at the level of the arterial wall ultrastructure. The purpose of this review is to summarize the potential factors that underpin the causes and control of arterial LWM, spanning considerations from the arterial extracellular matrix to systems-level integrative theories. First, an overview of LWM and relevant aspects wall composition will be discussed, including major features of the multiphasic pattern, arterial wall extracellular components, tunica fiber orientations, and arterial longitudinal pre-stretch. Second, current theories on the systems-level physiological mechanisms driving LWM will be discussed in the context of available evidence including experimental human research, porcine studies, and mathematical models. Throughout, we discuss implications of these observations with suggestions for future priority research areas

    Human Blastocyst\u27s Zona Pellucida Segmentation via Boosting Ensemble of Complementary Learning

    Get PDF
    Characteristics of Zona Pellucida (ZP), particularly its thickness, is a key indicator of human blastocyst (day-5embryo) quality. Therefore, ZP segmentation is an important step towards achieving automatic embryo qualityassessment. In this paper, a novel approach based on boosting ensemble of hybrid complementary learning isproposed to segment Zona Pellucida in human blastocyst images. First, an inner-ZP localization method isproposed to separate the ZP from the heavily textured area inside a blastocyst. Then, a deep Hierarchical NeuralNetwork (HiNN) is proposed to segment ZP area. The hierarchical nature of the proposed network enableslearning features with respect to their spatial location in the embryo. Finally, a Self-supervised Image-SpecificRefinement (SISR) strategy is proposed as a complementary step to boost the performance. The proposed systemis a hybrid approach in the sense that the HiNN learns the intra-correlation among images, while the SISR takesinto account the inter-correlation within the query image. Experimental results confirm that the proposed method is capable of identifying ZP area with average Precision, Recall, Accuracy and Jaccard Index of 85.2%, 92.0%, 95.6% and 78.1%, respectively. The proposed HiNN system outperforms state of the art by 4.9% in Precision, 11.2% in Recall, 3.6% in Accuracy and 10.7% in Jaccard Index

    Decrease in Central Venous Catheter Placement and Complications Due to Utilization of Ultrasound-Guided Peripheral Intravenous Catheters

    Get PDF
    Poster presented at: American College of Emergency Physicians (ACEP) conference. Introduction: -Up to 40% of ED visits include diagnostic blood tests and 26% result in administration of IV fluids necessitating successful peripheral intravenous (IV) catheter placement.1 -There is a subset of patients with difficult IV access (DIVA) in which traditional cannulation methods are unsuccessful resulting in central venous cannulation (CVC). -CVCs have a 5-15 percent complication rate2 and attributable costs per CVC related infection have been estimated at 34,508−34,508-56,000.3 -Ultrasound-guided peripheral IV catheters (USGPIVs) provide a method of potentially decreasing the need for CVC placement, however due to poor durability of USGPIVs the actual reduction in CVCs is unclear. -This study set out to quantify the reduction in CVCs in patients with DIVA by utilization of USGPIVs. Paper will be be published in: American Journal of Emergency Medicin

    Efficient estimation of probability of conflict between air traffic using Subset Simulation

    Get PDF
    This paper presents an efficient method for estimating the probability of conflict between air traffic within a block of airspace. Autonomous Sense-and-Avoid is an essential safety feature to enable Unmanned Air Systems to operate alongside other (manned or unmanned) air traffic. The ability to estimate probability of conflict between traffic is an essential part of Sense-and-Avoid. Such probabilities are typically very low. Evaluating low probabilities using naive Direct Monte Carlo generates a significant computational load. This paper applies a technique called Subset Simulation. The small failure probabilities are computed as a product of larger conditional failure probabilities, reducing the computational load whilst improving the accuracy of the probability estimates. The reduction in the number of samples required can be one or more orders of magnitude. The utility of the approach is demonstrated by modeling a series of conflicting and potentially conflicting scenarios based on the standard Rules of the Air

    Unaltered left ventricular mechanics and remodelling after 12 weeks of resistance exercise training – a longitudinal study in men

    Get PDF
    Previous longitudinal studies suggest that left ventricular (LV) structure is unaltered with resistance exercise training (RT) in young men. However, evidence from aerobic exercise training suggests that early changes in functional LV wall mechanics may occur prior to and independently of changes in LV size, although short-term changes in LV mechanics and structural remodelling in response to RT protocols have not been reported. Therefore, the purpose of this study was to examine the effects of RT on LV mechanics in healthy men performing 2 different time-under-tension protocols. Forty recreationally trained men (age: 23 ± 3 years) were randomized into 12 weeks of whole-body higher-repetition RT (20–25 repetitions/set to failure at ∌30%–50% 1 repetition maximum (1RM); n = 13), lower-repetition RT (8–12 repetitions/set to failure at ∌75%–90% 1RM; n = 13), or an active control period (n = 14). Speckle tracking echocardiography was performed at baseline and following the intervention period. Neither RT program altered standard measures of LV volumes (end-diastolic volume, end-systolic volume, or ejection fraction; P > 0.05) or indices of LV mechanics (total LV twist, untwisting rate, twist-to-shortening ratio, untwisting-to-twist ratio, or longitudinal strain; P > 0.05). This is the first longitudinal study to assess both LV size and mechanics after RT in healthy men, suggesting a maintenance of LV size and twist mechanics despite peripheral muscle adaptations to the training programs. These results provide no evidence for adverse LV structural or functional remodelling in response to RT in young men and support the positive role of RT in the maintenance of optimal cardiovascular function, even with strenuous RT
    • 

    corecore